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Abstract

In the antiferromagnetic (AFM) bilayer model the quantum phase transition (QPT)
between the ordered state and the disordered state is driven by a spin coupling tuning
parameter for nearest neighbour interaction on the lattice. In this thesis, using a bond
operator approach, we find the dispersion relation for the triplon quasi-particle deep
in the disordered phase. Using this dispersion we find the scattering amplitude of two
triplons in the disordered phase and find the bound state and its dependence on the
lattice for the different spin channels. We find that the singlet channel (S = 0) is the
most favourable bound state in this model.
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Néel order shown.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 (“Novel Approach to Description of Spin Liquid Phases in Low Dimen-
sional Quamtum Antiferromagnets”, V. Kotov et al., PRL, vol. 80 26)
This shows the numerical spin gap for the QAFM bilayer. This plot
shows a numerical plot of the dispersion relation in an AFM bilayer in-
cluding spin correlations not considered in our calculation. The different
types of lines used denote different approximations and solutions to the
series however for the purpose of this discussion we only note the critical
coupling at J⊥

J‖
≈ 2.57 and the gapless dispersion below this point. . . . 25

2.4 (“Novel Approach to Description of Spin Liquid Phases in Low Dimen-
sional Quamtum Antiferromagnets”, V. Kotov et al., PRL, vol. 80 26)
Plot of triplet excitation spectrum for high symmetry momenta for cou-
pling around the QCP. The uppercurve at q = 0 corresponds to the
coupling ratio J⊥

J‖
= 2.54 and lower curves are for J⊥

J‖
= 3.33. Once

again the different curves correspond to different computational meth-
ods and approximations however for this thesis we have to note the
distinct minimum for q = (π, π). . . . . . . . . . . . . . . . . . . . . . . 26

3.1 AFM coupling in the cross-section of a frustrated bilayer model (All
couplings are positive). . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4



3.2 Brillouin zone for our simple square lattice. For some q in the region
qx > 0 we also have the opposite momenta −q. Therefore to avoid this
double counting we divide the sum by 2. . . . . . . . . . . . . . . . . . 33

3.3 The two Born scattering processes for arbitrary initial, k1 and k2, and
final momenta, k3 and k4 , with spin polarisations α, β, γ, δ. . . . . . . 33

3.4 The square lattice of our bilayer. This allows us to separate the system
into x and y components. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 This is is numeric plot of the LHS of Sum vs εB

J ′ . There is bound state
for the root of this plot which was found to numerically be εB

J ′ ≈ 0.50600. 44
3.6 Singlet Bound State vs Coupling Constant. This is the Numeric Plot of

the roots of (3.37) for each coupling constant. . . . . . . . . . . . . . . 45
3.7 RMS diameter of singlet states. This plot shows how the RMS diameter

of the wavefunction for three different total momentum is dependent on
the coupling constant. This agrees with our prediction that in the strong
coupling regime DRMS → J ′′

J ′ . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8 Plot of binding energy vs coupling constant for the singlet channel for

non zero total momentum. This plot shows how the coupling constant
effects the binding energy in the singlet channel. The Q = (3, 0) and
Q = (1.73, 1.73) show that the greater the total momentum the lower
the critical coupling. However from the plot we see that the gradient in
the strong coupling regime for all the couplings are approximately the
same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Plot of bound state energy vs coupling constant. This shows the numer-
ical plot of how the coupling constant affects the bound state energy in
the triplet channel. This shows that for J

′′

J ′
< 5.5 the bound state does

not exist as we calculated in the previous section. . . . . . . . . . . . . 53
3.10 Triplet Bound state for various total momenta for the x-direction (in the

y-direction the plots are identical except with the permutation (Qx, Qy)→
(Qy, Qx)). This plot shows how the binding energy depends on the cou-
pling constant for Q = (0, 0), (0.5, 0.5), (2, 0), (0, 2), (3, 0), (0, 3), (1.73, 1.73).
As you can see the anisotropy of the total momentum effects the triplets
states more than the singlet states in Figure 3.8. . . . . . . . . . . . . . 55

3.11 Plot of three RMS diameters for the triplet channel for different total
momentum. As plotted the RMS diameter is asymptotic as it approaches
the critical coupling for the various momenta as the state is weakly bou
and therefore not localised. Also the RMS diameters approach 1 in the
strong coupling regime as the bound states become heavily localised on
the bilayer and is only bounded by the lattice spacing (in our case unity). 57

5



Acknowledgments

I would like to thank Professor Oleg Sushkov for introducing me to this problem and
his continued guidance, help and patience during the past 12 months. The time spent
working with Oleg this semester was invaluable and he has my deepest gratitude. I

would also like to thank my peers for making it an enjoyable semester.

6



Note on nomenclature and unit convention

The nomenclature in the field of quantum magnetism has no strict convention. There-
fore in this paper I will stick to the convention that spin-waves in the Néel ordered
phase are known as “classical spin waves” and the spin-waves in the disordered state
are known as triplons (the major focus of this thesis). In the literature triplons are
often referred to as magnons although classical spin waves are also magnons.

I will approach the scattering and bound state problem primarily with Feynman dia-
grams as I feel it conveys the principles clearly, however these diagrams will be accom-
panied with their mathematical equivalents for the actual computation.

For the 2D bilayer and tripon bound state in chapter 3 we will assume that the lattice
spacing is unity for simplicity. However for arbitrary lattice spacing these can easily
be restored using dimensional analysis. Also although the number of lattice points N
is important in all calculations their dependence cancels in all cases and therefore is
omitted.
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Introduction

The core of condensed matter physics is the study of different phases of matter, their
properties and the transitions between them. Early in the field, these phases were
common and ubiquitous in nature such as solids liquids and gases. In the 20th cen-
tury many more exotic phases of matter emerged and the field rapidly expanded and
continues to grow today, especially with the advent of quantum computing. These
new exotic phases included the quantum liquid phases such as the superfluid helium
state [1] and Bose Einstein condensation (BEC) [2, 3], and perhaps the most paradigm
shifting discovery was that of superconductivity [4]. Another major step in condensed
matter physics was the leap from classical magnetism and to quantum magnetism.
For centuries magnetism was understood in the scope of classical physics through its
macroscopic properties, however deeper study into the microscopic theory of magnetism
revealed that magnetism was inherently a quantum phenomena and a consequence of
the exchange interaction which arises from the properties of quantum statistics and it
was simultaneously derived by both Dirac and Heisenberg [5]. Since then a major part
of the condensed matter field is the study of these quantum properties of magnetism
and is incredibly active today especially in the context of quantum phase transitions
(QPTs), BEC of spin waves and superconductivity.

In this thesis I give a brief introduction to the theory of quantum magnetism, spin
waves and QPTs before introducing the antiferromagnetic (AFM) bilayer model, which
will be considered for the remainder of the thesis. I will demonstrate the quantum crit-
icality of the model and find the dispersion relation for the triplon quasi-particles on
the bilayer. Then considering the scattering of two triplons I will derive the bound
state between them for a variety of cases.

In essence, the aim of this thesis is to demonstrate the importance of QPTs and the
presence of magnetic quasi-particles within the AFM bilayer model and how these
quasi-particles interact and form a bound state. This research will ultimately lead to
further research on the condensation of these quasi-particles in the AFM bilayer which
is an avenue for the much sought after spin liquid.
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Importance of this Research

As stated above two major leaps in physics, particularly condensed matter, are the
microscopic theories of superconductivity and quantum magnetism and recently there
has been increased effort to find a link between the two phenomena. Although the BCS
theory of superconductivity has been extremely successful in describing and predicting
properties of the superconducting state in conventional low temperature superconduc-
tors, a complete description of high temperature superconductivity (HTSC) (which
cannot been accurately described by BCS theory) has eluded physicists for almost
three decades since their discovery in 1986 [6] in which the 1987 Nobel Prize in physics
was awarded for the discovery [7]. These HTSCs are typically cuprates however iron-
based HTSC have recently been discovered [8, 9].

In 1987 it was proposed that HTSC could be related to quantum spin liquid phase
of an AFM system by Nobel Laureate Philip W. Anderson as there are similarities
between the condensation of spin quasi-particles in a quantum spin liquid and the con-
densation of Cooper pairs in the standard BCS theory[10]. Due to this proposition the
study of bound states manifesting in quantum magnetic systems has become extremely
topical in the last decade and has manifested in high impacts articles such as [11]. Fur-
ther information on the connection between spin liquids and HTSC can be found in [12].

Quantum spin liquids were first proposed in 1973 by P.W. Anderson in [13] as a new
AFM state as an alternative to the standard Néel state. It was later characterised a
disordered state with coupled spins and a non magnetic ground state and therefore
an obvious candidate is the disordered regime of the AFM state. A mathematical ap-
proach to spin liquids can be found in [14] however the general properties that a spin
liquid must display are disorder and display some hydrodynamic variable.

In the context of this thesis we develop the basis of a spin liquid state for a two
dimensional frustrated square lattice. We find the bound state of the triplon quasi-
particles in the highly disorder regime at absolute zero. This will lead onto important
further research particularly in the direction of the condensation of these bounds states
and therefore the manifestation a spin liquid in the system.
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Thesis Outline

This thesis will progress as follows.

Chapter 1: Introductory Material This chapter contains necessary information
required to understand further concepts in the thesis. This includes a brief introduc-
tion to quantum magnetism and a further section specifically on the antiferromagnetic
state and its relevant properties. Then there will be a brief overview of symmetry
considerations in magnetic systems and is finalised by the concept of quasi-particles
and how they appear in the context of quantum magnetism.

Chapter 2: Quantum Criticality This chapter will introduce the AFM bilayer
model which we will use for the remainder of the thesis. In this we will show the
QPT of the bilayer driven by the coupling tuning parameter and find the dispersion
relation of triplons traveling through the lattice. We will finish this chapter by giving
an overview of previous literature on the bilayer and properties of its QPT.

Chapter 3: Triplon Bound States This is the major work of the thesis where we
find the bound states of two triplons travelling through the lattice with an additional
frustrated term in the AFM bilayer. We begin by introducing the Bethe-Salpeter
equation for a bound state in scattering theory and then apply it to the different spin
channels of the bound states and use numerical methods to quantify the bound states.

Chapter 4: Conclusion This is the final chapter where we review the work done
in the thesis and present avenues for further research.

Appendix A: Boson Commutation Relations Here we present a brief overview
of bosonic commutations and the Bogoliubov transform.

Appendix B: Heisenberg to Bond Operators Calculation This appendix de-
scribes how to perfectly map the Heisenberg Hamiltonian to an effective triplon exci-
tation Hamiltonian in a bond operator approach. This technique is applied in chapters
2 and 3.

Appendix C: Spin Scattering Channels This appendix describes the properties
of the three bound state spin channels required for the calculations in chapter 3.
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Appendix D: Numerical Calculations This is a brief appendix which describes
how the summations in chapter 3 were calculated. Sample code is provided for the
singlet bound state energy vs coupling constant.



Chapter 1

Introductory Material

1.1 Quantum Magnetism

Magnetism has been a known natural phenomena since ancient times due to it’s per-
culiar properties of attraction and repulsion. These macroscopic properties of magnets
have been applied over the centuries to the benefit and progress of humanity in the
context of scientific research and engineering. However since the birth of quantum
mechanics the the understanding of microscopic properties of magnetism in particular
has been an important development modern physics.

The quantum mechanical origin of magnetism is due to the exchange interaction
which is a consequence of Fermi-statistics, indistinguisability of electrons and the
anti-symmetric requirement of the electron (fermion) wavefunctions. In materials, the
macroscopic magnetism arises from the collective alignment of spin of atoms in the ma-
terials lattice. These individual spins produce a magnetic moment which causes each
atom to act like a small magnet and when a statistically significant amount of these
magnetic moments align, the material macroscopically behaves like a magnet. This
phenomena is known as ferromagnetism (FM) and is a purely quantum mechanical
phenomena and arises purely from the exchange interaction. Another type of mag-
netism (AFM), the focus of this thesis, is another major area of study in condensed
matter physics due to it’s exotic properties. Unlike FM described above AFM ma-
terials are those where the spins are anti-aligned along the lattice. These two types
of magnetism are illustrated in Figure 1.1 and properties of the AFM state will be
discussed in detail below.

12



1.1. QUANTUM MAGNETISM 13

These quantum magnetic systems are many body systems the models which de-

Figure 1.1: Comparison of ordered FM (a) and AFM (b) spin orientation. In the case
of FM the spins are all aligned in the same direction, whereas in the AFM case the
spins are anti-aligned.

scribe them are non trivial and often approximations. The early models of magnetism
only described the FM state and focus on the magnetic susceptibility of the systems
and describes average energies and spin expectation values [15, 16]. Though a good
basis for quantum magnetism, these models provide only superficial insight into the
actual quantum mechanical dynamics of the systems including spin correlations and
quantum fluctuations in the lattice [15]. An example of these early models is the Ising
model which which describes the interaction of discreet spin operators (either spin up
or spin down) in the lattice which interact with neighbouring spins. A great review of
this model in the context of FM and its importance and historical implications can be
found in [17]. The model we use in this thesis is known as the Heisenberg model,which
is a purely quantum mechanical model.

In FM materials the spins of the atoms are aligned in the same direction (Figure 1.1a)
in a lattice. In Heisenberg notation the Hamiltonian of the ferromagnetic coupling
between lattice points i and j is given by,

HFM = −J
∑
i,j

Si · Sj, (1.1)

Where J > 0.

Where Si is the spin on the ith lattice site.

AFM materials are those which have anti-aligned spins (Figure 1.1b). In Heisenberg
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notation the Hamiltonian of the AFM coupling between lattice sites i and j is,

HAFM = J
∑
i,j

Si · Sj, (1.2)

Where J > 0.

Contemporary research in quantum magnetism primarily focuses on the study of QPTs,
condensed states and their quasi-particles. These require more complicated approaches
than the standard Heisenberg or Ising approach and require a field theory approach.

1.2 Properties of the Anti-Ferromagnetic State

As described above the AFM state is one where the anti-alignment of spins is favoured
and can be described by the Hamiltonian in 1.2 and pictured in Figure 1.1(a). For sim-
plicity we typically consider this state to be the sum of nearest neighbours only (〈i, j〉).
Unlike the FM state where the net alignment of spins produces macroscopic magnetic
field there will be no net magnetisation for the AFM ground state and therefore there
is no macroscopic magnetism. Therefore to study the AFM state we have to use more
complex methods such as neutron diffraction [18, 19, 20].

The major property of the FM state is the spontaneous magnetism at the Curie point.
The phase below this point is known as the Curie Phase and is characterised by the
spontaneous total alignment of spins of the system whereas above the Curie point there
still exists ferromagnetic coupling but no net alignment of spins (paramagnetic). The
Curie phase is known as the ordered phase of the FM and the phase above the Curie
point is known as the disordered phase. In AFM systems there are analogs to these
phases. The ordered phase of an AFM system is known as the Néel phase where the
anti-aligned spins spontaneously align (similar to the Curie phase but no net mag-
netisation) and there exists a disordered phase where there is no net polarisation and
the AFM ground state can be described by localised singlets known as singlet dimers.
In this respect the major difference between the AFM and FM system is what drives
this phase transition. In a FM system the phase transition is driven by temperature
however in an AFM system there is a phase transition occurs at absolute zero and
therefore driven by some other parameter. These phases transitions at absolute zero
are the result of quantum fluctuations and are known as QPTs. How these QPTs man-
ifest in the AFM bilayer model will be discussed in chapter 2.



1.3. SYMMETRY BREAKING IN MAGNETIC SYSTEMS 15

Since the 1930s restrictions to the existence of ordered quantum magnetic states has
been studied. It was found that there can be no long range order in crystalline struc-
tures for one- or two-dimensional systems [21, 22].

The principle requirement for an AFM is one that is can be characterised by (1.2)
and therefore many different lattice structures have been studied which display this
property. In this thesis we consider the AFM bilayer (Illustrated in Figure 2.1) which
has nearest neighbour interactions on a simple square lattice and in chapter 3 we in-
troduce an additional frustrated coupling to facilitate the calculation.

1.3 Symmetry Breaking in Magnetic Systems

As stated in the previous section, magnetism is the result of a collective alignment
or anti-alignment of spins in a particular polarisation. Therefore for magnetisation to
occur the spins must “choose” a polarisation despite all polarisations being degener-
ate. Therefore it has broken rotational symmetry (O(3) symmetry). Also considering
the Hamiltonians (1.1) and (1.2) we see there is no term in the Hamiltonian which
influences the polarisation of the state and therefore the symmetry is said the be spon-
taneously broken [23]. Magnetism is the most common example of the spontaneous
symmetry breaking as it illustrates it perfectly in that the system arbitrarily “selects”
a ground state in a particular direction despite the ground state being infinitely degen-
erate. This property of is responsible for many of the interesting properties of magnetic
materials.

This argument describes how the symmetry is spontaneously broken in the ordered
phase of the magnetic materials. In these ordered phases there the phase exhibits
long range order which is not present in the disordered phase. In these phases the
spontaneously broken symmetry results in what is known as a Goldstone mode[24] in
quantum field theory and these Goldstone modes have a gapless dispersion relation as
we will show in chapter 2.

However as we will show the disordered phase will have a gapped dispersion relation
(also known as a spin gap in this context) for its quasi-particle excitations which is what
gives the phase its interesting properties particularly in the context of spin-liquids.
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1.4 Quasi-Particles, Spin Waves and Triplons

In condensed matter physics elementary excitations of the system result in a pertur-
bation of the system. These excitations can be modeled as particles which propogate
through the system and have definite momenta and energy despite not be directly
attributable with discreet elements of the system. These quasi particles are impor-
tant as they allow us to describe the properties of the excitations through a dispersion
relation[25].

Consider the ordered FM and AFM models which have an ordered ground state of
parallel and anti-parallel spins respectively. What happens if one of the spins is per-
turbed in the lattice? By the exchange interaction the perturbed spin will effect it’s
neighbours spins and this perturbation will propagate throughout the lattice. This
propagation through the lattice is known as a spin-wave and are a crucial concept
in quantum magnetism as they represent how an excited state translates through the
system[15, 26].

The spin waves described above are known as “classical spin waves” and occur in
ordered FM and AFM systems [27]. However in the AFM disordered phase (chapter
2) we have to consider a new type of spin wave, a triplon. Unlike the AFM ordered
phase where a perturbation or excitation causes a perturbation to the singlet state in
a lattice, deep within the disordered phase each dimer is highly localised and therefore
an excitation cause the spin of one site to flip creating a “triplet state”. This “triplet
state” propogates through the lattice like a spin-wave and is a quasi-particle known
as a triplon which is illustrated in Figure 1.2. We will elaborate on this concept in
chapter 2 with a mathematical basis.

Figure 1.2: Idealised illustration of triplon production in AFM ground state. From the
simple AFM ground state (a) there is quantum fluctuation which cause the spin to flip
at a site producing a triplet (b)(denoted by blue sites). This triplet state propogates
along the lattice (c) and acts as a quasi-particle, that is, a triplon.



Chapter 2

Quantum Criticality

A large field of condensed matter physics is the study of QPTs. These are phase tran-
sitions of the ground state of the system and therefore occur only at T = 0K and
therefore are not thermodynamically dependent and are related to the quantum cor-
relations of the system and the effects of quantum fluctuations. To drive these QPTs
we need some sort of tuning parameter g at T = 0K where the QPT occurs for some
critical value of the parameter gc. In this thesis we consider the tuning parameter to be
the ratio of the inter- and intra-layer coupling, however there exists other possible tun-
ing parameters for phase transitions such as pressure, electro-magnetic field strength
or electron density. A tuning parameter need only influence the quantum correlations
in the system to produce a QPT.

For each QPT there exists a Quantum Critical Point (QCP) at some gc where the
phase changes. The study of this critical point gives core information about the be-
haviour and properties of systems under specific conditions. In the context of the
anti-ferromagnetic bilayer with coupling constant tuning parameter the QCP obey the
Non-linear σ model[28, 29].

A good overview of QPT can be found in the book “Quantum Phase Transitions”
by S. Sachdev [30] and for quantum criticality in magnetic systems specifically “Quan-
tum Criticality” by S. Sachdev and B. Keimer [31]. By definition each side of these
critical points has a distinct phase, in magnetic media these phases can be catagorised
as either ordered or disordered. The ordered phase displays long range order such as
the ferromagnetic Curie phase where all the spins are aligned, or the AFM Néel phase
where all the spins are antialigned along the lattice. The disordered or dimer phase

17



18 CHAPTER 2. QUANTUM CRITICALITY

does not display this long range order but exhibits the magnetic property localised
throughout the lattice for example a paramagnetic state [31]. These localised points
are known as dimers in the AFM case. In this thesis we consider a system deep in the
disordered phase far away from the critical point.

In this chapter we will discuss the Mermin-Wagner theorem, the Hamiltonian and quan-
tum critical point of the AFM bilayer system including the quasi-particle bandgap. We
will also briefly mention previous numerical models and experimental observations of
this system in the literature.

2.1 Mermin-Wagner Theorem

The Mermin-Wagner theorem presents a powerful fundamental argument which pro-
vides constraints on the existence of phase changes and critical points in magnetic
materials [32]. In simple terms, the Mermin Wagner theorem states that at any non
zero temperature, a one- or two-dimensional Heisenberg magnetic system with a fi-
nite range interaction cannot display long range order (ordered phase in AFM or FM
materials) due to thermal fluctuations destroying the order. This means that a phase
transition to a magnetic state can only occur at T = 0K for one- and two-dimensional
system, although there are no restrictions to three-dimensional systems.

Also AFM materials present another constraint, like thermal fluctations destroying
the long range order in one- and two-dimensions. AFM materials have the condi-
tion that even at absolute zero there cannot be long range order in one-dimensional
systems as quantum fluctuations destroy the order [33, 34]. Therefore the quantum
criticality of the AFM ground state can not be studied for a linear chain of spins.
In this thesis we study the AFM bilayer and therefore to study the quantum criticality
we consider the system at absolute zero where there will be a QPT between the ordered
Néel phase and the disordered phase.
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Figure 2.1: Idealised illustration of the AFM bilayer in the ground state.

2.2 Antiferromagnet Bilayer Model and Bond Op-
erators

In this section we consider the unfrustrated antiferromagnetic bilayer [29, 35, 36, 37]
shown in Figure 2.1. The Hamiltonian for this model is,

H = J‖
∑
〈i,j〉

(S1,i · S1,j + S2,i · S2,j) + J⊥
∑
i

S1,i · S2,i. (2.1)

Where J‖ is the intra-layer spin coupling and J⊥ is the inter-layer spin coupling and
they are both positive. S are spin operators which have magnitude S = 1

2 and therefore
belong to the SU(2) group, and the subscripts denotes their position on the bilayer.
The first subscript is if it is on the first (1) or second (2) layer and the second subscript
is their fixed position along the layer. Eg. S1,i is spin on the first layer at position i.
The summation over 〈i, j〉 is the sum over nearest neighbours. Therefore the first two
terms in the Hamiltonian represent the interaction between adjacent spins on the same
layer and the third term is the magnetic coupling between the same site on each layer.

We now define singlet and triplet description for inter-layer pairs. This splitting of
the layers into pairs is known as dimerisation where each pair is a dimer (Figure
2.2)[38]. We define these dimers using the bond operators in the mean-field approach
of S. Sachdev and R. N. Bhatt[39]. There are 3 possible triplet dimer excitations for
each polarisation and one singlet dimer (a system with only singlet dimers represents
the ground state of the system).
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Figure 2.2: Representation of a dimer in the disordered phase of AFM chain. The
dashed blue oval enclosing the two red spins is a dimer, in this case the dimer is a
singlet. (Idealisation, the dimer state does not exhibit the Néel order shown.)

Singlet dimer: |s〉 = s† |0〉 = 1√
2

(|↑↓〉 − |↓↑〉) (2.2)

Triplet dimers: |tx〉 = t†x |0〉 = − 1√
2

(|↑↑〉 − |↓↓〉)

|ty〉 = t†y |0〉 = i√
2

(|↑↑〉+ |↓↓〉)

|tz〉 = t†x |0〉 = 1√
2

(|↑↓〉+ |↓↑〉)

In a mean field theory the spin of the particle can be represented as Si = ~
2a
†
iµσ̂µνaiν

were σ̂ are the Pauli matrices and a† and a are spinor creation and annihilation operator
respectively. Using this, the spins can be written in operator form using 2.2 and finding
all the matrix elements of the transform that the spins of the dimers can be represented
by [39]:

S1,α = 1
2
(
s†tα + t†αs− iεαβγt

†
βtγ
)
, (2.3)

S2,α = −1
2
(
s†tα + t†αs+ iεαβγt

†
βtγ
)
.

Where ε is the totally antisymmetric tensor and α = x, y, z.

To employ this operator method certain constraints need to be applied. For each dimer
we can only have a single bond, ie. either a singlet or one of the triplets. Therefore for
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each site dimer in the bilayer there is the operator hardcore constraint,

s†s+ t†αtα = 1. (2.4)

It should be noted that these operators satisfy the bosonic commutator relations (Ap-
pendix A). The spin states represented above display properties of spin SU(2) operators
and can generate O(4) rotations in space[39].

2.3 Effective Hamiltonian

Using this new basis, we can construct and effective Hamiltonian by perfectly mapping
the new spin operators (2.3) to the Heisenberg Hamiltonian (2.1) this is shown explicitly
in Appendix B. The effective Hamiltonian becomes [40],

Heff = H2 +H3 +H4 (2.5)

Where H2 =
∑
k,α

{
Akt

†
kαtkα + Bk

2
(
t†k,αt

†
kα + tkαtkα

)}
,

H3 = 0,

H4 = J‖
2
∑
<i,j>

[
t†αit

†
βjtβitαj − t

†
αit
†
αjtβitβj

]
,

HC = U
∑
i,αβ

t†αit
†
βitβitαi ,U →∞,

Where Ak = J⊥ + 2J‖ξk,

Bk = 2J‖ξk,

ξk = 1
2 (cos(kx) + cos ky) .

Where the elements of H2 have been transformed to momentum space using the Fourier
transform,

tα,i = 1√
N

∑
i

ei(ki)tα,k. (2.6)

Where N is a normalisation term due the number of lattice points, we ignore this from
here on.

Interestingly, the only term dependent on the interlayer coupling is the second or-
der term. This will become apparent in the next section where we will see that the
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quantum critical point is proportional to this coupling. However the higher order terms
represent the production of multiple triplons in the system. H4 represents the produc-
tion of two adjacent triplons which will be the focus of our bound state in chapter 3.

The hardcore repulsion term Hc and enforces (2.4) which means that two triplons
cannot exist on the same site.

2.4 Quasi-particle Band gap

To find the quasi-particle band gap we assume that only the second order excitations
(2.5) influence the band gap and all higher order terms have a negligible impact [40].
To find this band gap we use the method of Bogoliubov [41, 42]. First we find the
the Bogoliubov transform for the momentum dependent operators. Letting β be the
Bogoliubov quasi-particles and suppressing spin notation we have,

tk = ukβk + vkβ
†
−k,

t†k = ukβ
†
k + vkβ−k.

Substituting these into H2 we find that,

H2 =
∑

k
Ak

(
u2

k + v2
k

)
β†−kβ−k + Akukvk

(
β†−kβ

†
k + β−kβk

)
+ (2.7)

Bk

2 ukvk
(
β†kβk + β†−kβ−k

)
+ Bk

2
[
u2

k

(
β†kβ

†
−k + βkβ−k

)
+ v2

k

(
β−k + βkβ

†
−kβ

†
k

)]
.

The excitation spectrum is given by the coefficient of the number of quasi-particle
excitations, that is ωknβ where the number of excitation are terms with the form,

nβ = β†β.

Therefore we have to set the coefficients for all other terms ( those of the form ββ and
β†β†) to 0 which gives the condition,

Akukvk +Bk
(
u2

k + v2
k

)
= 0.
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Therefore comparing the remainder of the terms in (2.7) with ωknβ leaves us with the
equation,

ωk =
∑

k
Ak

(
u2

k + v2
k

)
+Bkukvk.

Now using the commutation relation of the bosonic Bogoliubov transformation,

u2
k − v2

k = 1,

⇒ uk = cosh (θ) ,

vk = sinh (θ) .

We solve the self consistent equation and find that the bandgap is given by,

ω2
k = Ak −Bk,

⇒ ωk =
√
J2
⊥ + 4J‖J⊥ξk,

⇒ ωk

J⊥
=
√

1 + 4J‖
J⊥

ξk. (2.8)

This is the excitation spectrum for the AFM bilayer. From this we can see that there
is a quantum critical point where band gap vanishes and there is a minimum in the
dispersion which corresponds to,

ωk = 0⇒ J2
⊥ + 4J‖J⊥ξk = 0,

⇒ J⊥
J‖

= −4ξk = Jc,

⇒ Jc = 4 for ξk = −1. (2.9)

However this is an extremely crude approximation to the QCP as it does not account
for correlations between spins in the system. We will present a more accurate value
below.

This QCP shows that in the ordered phase (J⊥
J‖

< Jc) we have a Goldstone boson
(gapless dispersion, ωk = 0 for q → 0) and it the disordered phase the triplon exci-
tations are gapped (ωk 6= 0). This represents the phase transition between the Néel
ordered phase and the disordered phase (J⊥

J‖
> Jc). In this thesis we consider the regime

deep in the disordered domain (J⊥ � J‖) which intuitively corresponds to interlayer
sites highly correlated with little effect on adjacent sites in comparison. We can safely
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catagorise the lattice sights as dimers. Therefore in this regime we can take the the
first order approximation of the quasi-particle excitation spectrum as,

ω2
k =

√
J2⊥+ 4J‖J⊥ξk,

⇒ ωk ≈ J⊥ + 2J‖ξk. (2.10)

2.5 Quantum Critical Point and Spin Gap

In this section I will give brief overview on the literature related to the quantum crit-
icality of the AFM bilayer. The minimum of the non zero excitation spectrum is also
known as the spin gap [38, 43] or triplet gap as it is the minimum required energy need
to flip the total spin of the dimer. As we can see from (2.8) the minimum will occur
at q = (π, π) and therefore we define the spin gap dispersion to be ∆ = ωπ,π[40]. The
dispersion relation given by (2.8) has been solved numerically to find the QCP and the
spin gap in the disordered phase in [40]. In this paper they find that the QCP is found
at J⊥

J‖
≈ 2.57 (Figure 2.3). Also as we are considering a two-dimensional system we

also have a high dependence on the direction of propogation for the triplons. In Figure
2.4 from [40] the triplet dispersion is show for the spectrum of momentum within the
Brillouin zone of the square lattice and we can see a clear minimum at q = (π, π).
Although this is the dispersion around the QCP (J⊥

J‖
≈ 2.57) and for the bound states

we are considering the highly disordered regime (J⊥ � J‖) we will have to consider the
minimum of the excitation spectrum.

Experimentally the AFM Bilayer is an important model for the properties of an-
tiferromagnetism. As stated above the spin gap is thought to be an integral part of
high temperature superconductivity. The bilayer model has physical implications as it
is thought to be a good model for many of the cuprates [44, 45, 46]
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Figure 2.3: (“Novel Approach to Description of Spin Liquid Phases in Low Dimen-
sional Quamtum Antiferromagnets”, V. Kotov et al., PRL, vol. 80 26) This shows
the numerical spin gap for the QAFM bilayer. This plot shows a numerical plot of
the dispersion relation in an AFM bilayer including spin correlations not considered
in our calculation. The different types of lines used denote different approximations
and solutions to the series however for the purpose of this discussion we only note the
critical coupling at J⊥

J‖
≈ 2.57 and the gapless dispersion below this point.
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Figure 2.4: (“Novel Approach to Description of Spin Liquid Phases in Low Dimen-
sional Quamtum Antiferromagnets”, V. Kotov et al., PRL, vol. 80 26) Plot of triplet
excitation spectrum for high symmetry momenta for coupling around the QCP. The
uppercurve at q = 0 corresponds to the coupling ratio J⊥

J‖
= 2.54 and lower curves

are for J⊥
J‖

= 3.33. Once again the different curves correspond to different computa-

tional methods and approximations however for this thesis we have to note the distinct
minimum for q = (π, π).



Chapter 3

Triplon Bound States

3.1 Frustrated model

In this section we introduce a frustrated term to our Heisenberg Hamiltonian (2.5),

HF = JF
∑
〈i,j〉

(S1,i · S2,j + S2,i · S1,j) . (3.1)

This term corresponds to an antiferromagnetic interaction between diagonal sites in
the bilayer model. This is shown diagramatically in Figure 3.1 for a single square
lattice along with intra- and inter-layer coupling. This frustrated term is important
as it increases the depth of the well and provides us a new parameter to tune the
depth of the bound state. This term does not change the kinematic structure of the
Hamiltonian in (2.5), only the magnitudes which is beneficial in increasing the depth
of the potential well as we will see in the Hamiltonian below. We define the variables,

J ′′ = J‖ + JF ,

J ′ = J‖ − JF .

Which act as our coupling parameters we will use to vary the bound state strength.

Using the process in Appendix B the new bond operator form of the bilayer Hamilto-

27
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Figure 3.1: AFM coupling in the cross-section of a frustrated bilayer model (All cou-
plings are positive).

nian is,

Heff = H2 +H3 +H4, (3.2)

Where H2 =
∑
k,α

{
A′kt

†
kαtkα + B′k

2
(
t†k,αt

†
kα + tkαtkα

)}
,

H3 = 0,

H4 = J ′′

2
∑
〈i,j〉

[
t†αit

†
βjtβitαj − t

†
αit
†
αjtβitβj

]
.

Where,

A′k = J⊥ + 2J ′,

B′k = 2J ′ξk.

Along with the same hardcore restraint. Therefore using the same process in section
2.4 we find that addition of the frustrated term shifts the band-gap to,

ω′2k =
√
J2
⊥ + 4J ′J⊥ξk, (3.3)

⇒ ω′k ≈ J⊥ + 2J ′ξk.
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In the highly disorder regime (J⊥ � J ′). This frustrated model is also commonly
studied in the literature and is thought to have many natural analogs[47, 48].

3.2 Bethe-Salpeter Equation

k

p p′

k′

Γ =

p

k

p′

k′

+

p

k

n p′

m k′

+

p

k

n n′ p′

m m′ k′

+ · · ·(3.4)

The Bethe-Salpeter equation [49, 50] equation is used to find the bound state between
two particles. For the interaction between two states, this scattering can be represented
as the infinite perturbation in (3.4).

Mathematically this is given by,

Γkp,k′p′ (E) = Mkp,k′p′ +
∑
nm

Mkp,nmMnm,k′p′

E − εmn + i0 +
∑

nmn′m′

Mkp,nmMnm,n′m′Mn′m′,k′p′

E − εnm − εn′m′ + i0 + . . .

Where Mi,j is the Born amplitude for the scattering between states i and j and εi is
the energy of the intermediate state. Upon inspection of Figure 3.4 we can see that
this scattering amplitude is a geometric product. This is shown diagrammatically in
(3.5).
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k

p p′

k′

Γ =

p

k

p′

k′

+

p

k

n p′

m k′

+

p

k

n n′ p′

m m′ k′

+ · · ·

⇒

p

k

p′

k′m

n

Γ =

p

k

n p′

m k′

+

p

k

n n′ p′

m m′ k′

+

p

k

n n′ n′′ p′

m m′ m′′ k′

+ · · ·

=

k

p p′

k′

Γ −

p

k

p′

k′

⇒

k

p p′

k′

Γ =

p

k

p′

k′

+

p

k

p′

k′m

n

Γ (3.5)

This is the diagram form of the Bethe-Salpeter equation, it is equivalent to the math-
ematical form,

Γkp,k′p′ (E) = Mkp,k′p′ +
∑
nm

Mkp,nmΓnm,k′p′ (E)
E − εn − εm + i0 (3.6)

Where the i0 term corresponds to shifting the pole of the Green’s function, however
we will ignore this term in future calculations as it does not play a role in our model.

Therefore the Bethe-Salpeter equation changes the infinite sum of the scattering am-
plitude into a closed form equation. One more important step still remains, in a bound
state there is a pole in the scattering amplitude and therefore approaches infinity[50].
That is,

E = EB ⇒ Γ (E)→∞.

Therefore from (3.6) we can see that both the terms containing the scattering amplitude
approach infinity however the first order Born approximation term remains constant
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and can be ignored. Therefore for the bound state we find that,

Γkp,k′p′ (E) =
∑
nm

Mkp,nmΓnm,k′p′ (E)
E − εn − εm + i0 . (3.7)

3.3 Bethe-Salpeter Equation for Triplon Bound State

For the bound state of two triplons we will use a similar approach to that of O.P.
Sushkov and V.N. Kotov in [51]. The difference between these two problems is that in
[51] they find the bound state in for a single 2D antiferromagnetic spin chain where we
consider the 2D Bilayer. For two triplons in our bilayer with momentum k and l with
a bound state energy E, the Bethe-Salpeter equation (3.7) becomes,

∑
k′l′

Γkk′,ll′ (E) =
∑
k′,l′

∑
mn Mnk′,ml′Γmk′,nl′ (E)

E − εm − εn
,

and diagramatically as (suppressing spin),

k

l l′

k′

Γ =

l

k

l′

k′

+

l

k

l′

k′n

m

Γ (3.8)

Letting Fa,b = ∑
a′,b′ Γaa′,bb′ we can rearrange this into,

Fk,l (E) =
∑
mn

Mkn,lmFm,n (E)
E − εm − εn

,

and then for,

ψ (a, b) = Fa,b
E − εa − εb

,

and integrating over all possible intermediate states m and n we have the integral form
of the equation,

(E − εk − εl)ψ (k, l) =
∫∫

Mkm,lnψ (m, n) dmdn. (3.9)

This equation is for the two particle representation in (3.8). However as our interaction
is non retarding we can reduce this two body problem to an effective one body problem
by considering the centre of mass (CoM). Therefore, for the two particle scattering
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k + l = k′ + l′ we can redefine this for the total momentum of the pair,Q (also within
the Brillouin zone), and the relative momentum (q and p),

Total Momentum: Q = k + l = k′ + l′, (3.10)

Relative Momentum: q = l− q
2 and p = l′ − q′

2 .

⇒ k = Q
2 + q,

l = Q
2 − q,

k′ = Q
2 + p,

l′ = Q
2 − p

After making this transformation to relative momenta we need to be wary of double
counting within the Brillouin zone for our intermediate states in (3.9). To see this
consider the Brillouin zone in Figure 3.2. We see that by integrating states with
positive momentum in the x direction within the Brillouin zone by symmetry we also
integrate over negative momenta. Therefore to avoid this double counting we have
divide the sum over the Brillouin zone by 2.

Obviously the intermediate energies of the triplons must obey the triplon dispersion
relation (3.3) that is,

εi = ω′i

⇒ εk + εl = ω′Q
2 −q

+ ω′Q
2 +q

,

After applying these conditions, we find that the BSE in its discrete sum form is given
by, (

E − ω′Q
2 +q
− ω′Q

2 +q

)
ψ (Q,q) = 1

2
∑

q
M (Q,q,p)ψ (p) (3.11)

3.3.1 Born Approximation

To solve (3.11) we need to calculate the scattering amplitude of the Born approximation
for the initial state into the intermediate states,

Mαβ,γδ (Q,q,p) . (3.12)
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Figure 3.2: Brillouin zone for our simple square lattice. For some q in the region qx > 0
we also have the opposite momenta −q. Therefore to avoid this double counting we
divide the sum by 2.

Therefore we will first consider how the Born scattering changes the momentum of the
system.

As we are considering a two dimensional square lattice we can split up the scattering

k2, β k4, δ

k1, α k3, γ

(a)
k2, β k3, γ

k1, α k4, δ

(b)

Figure 3.3: The two Born scattering processes for arbitrary initial, k1 and k2, and final
momenta, k3 and k4 , with spin polarisations α, β, γ, δ.

problem into two dimensions, x and y (Figure 3.4) and consider them separately. First
we need to transform our quartic hamiltonian (??) into momentum space. To do this
we use the standard Fourier transform with respect to the discrete lattice sites i and j
using equation (2.6), where here, to avoid confusion, we reference the lattice points as
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ri, assume a summation over all equations and ignore the normalisation of the finite
lattice, N .

Figure 3.4: The square lattice of our bilayer. This allows us to separate the system
into x and y components.

To find the Born scattering amplitude we have to find the matrix elements of the
the quartic Hamiltonian (3.2) with the initial and final states in Figure 3.3a,

H4 = J ′′

2
∑

k,〈ri,rj〉
ei(k1ri+k2rj−k3ri−k4rj)

[
t†α,k3t

†
β,k4tβ,k1tα,k2 − t

†
α,k3t

†
α,k4tβ,k1tβ,k2

]
.

Now summing over nearest neighbours (Figure 3.4) we have that,

rj = ri ± 1,

⇒
∑
〈ri,rj〉

=
∑
ri

{(rj → ri + 1) + (rj → ri − 1)} .

Therefore,

∑
ri,ri+1

H4 +
∑

ri,ri−1
H4 = J ′′

2 ei(k1ri+k2ri−k3ri−k4ri)
(
ei(k2−k4) + e−i(k2−k4)

)
×

[
t†α,k3t

†
β,k4tβ,k1tα,k2 − t

†
α,k3t

†
α,k4tβ,k1tβ,k2

]
,

= J ′′ei(k1ri+k2ri−k3ri−k4ri) cos (k2 − k4)
[
t†α,k3t

†
β,k4tβ,k1tα,k2 − t

†
α,k3t

†
α,k4tβ,k1tβ,k2

]
.
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Therefore the scattering amplitude is given by,

Mαβ,γδ (k) = J ′′

2
〈
tδ,k4tγ,k3

∣∣∣H4

∣∣∣ t†α,k1t
†
β,k2

〉
= J ′′ei(k1ri+k2ri−k3ri−k4ri) cos (k2 − k4)×〈
tδ,k4tγ,k3

∣∣∣ t†α,k3t
†
β,k4tβ,k1tα,k2 − t

†
α,k3t

†
α,k4tβ,k1tβ,k2

∣∣∣ t†α,k1t
†
β,k2

〉
,

= J ′′ei(k1ri+k2ri−k3ri−k4ri) cos (k2 − k4) (δαδδβγ − δαβδγδ) .

This is for the scattering in Figure 3.3a, in Born scattering there are two possible scat-
tering due to the indistinguisability of the particle, therefore for the second scattering
event (Figure 3.3b) we simply have k4 ↔ k3. which implies the other scattering event
is,

Mαβ,γδ (k) = J ′′ei(k1ri+k2ri−k3ri−k4ri) cos (k2 − k3)×〈
tδ,k4tγ,k3

∣∣∣ t†α,k3t
†
β,k4tα,k1tβ,k2 − t

†
α,k3t

†
α,k4tβ,k1tβ,k2

∣∣∣ t†α,k1t
†
β,k2

〉
,

= 2ei(k1ri+k2ri−k3ri−k4ri) cos (k2 − k3) (δαγδβδ − δαβδγδ) .

Now substituting in the CoM momenta in the x-direction,

k1 = Qx

2 + qx,

k2 = Qx

2 − qx,

k3 = Qx

2 + q′x,

k4 = Qx

2 − q
′
x.

The total Born approximation for the x-direction becomes,

Mαβ,γδ (q)x = J ′′ (δαγδβδ − δαβδγδ) cos (qx + q′x) + J ′′ (δαδδβγ − δαβδγδ) cos (qx − q′x) .

The Born amplitude is the same for the y-direction. Therefore in total the Born
Amplitude is,

Mαβ,γδ (k) = 2J ′′ (δαγδβδ − δαβδγδ) ξq+q′ + 2J ′′ (δαδδβγ − δαβδγδ) ξq−q′ , (3.13)

For ξk = 1
2 (cos (kx) + cos (ky)) .

To define a definitive Born amplitude we need to define our spin polarisations. In
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the case of the bound state between two triplons there are 3 possible spin channels.
The first is the unpolarised state where the the total spin of the bound state is S = 0,
the second is the triplet channel where the total spins add up to S = 1 and finally
is the state is the quadrapole channel where the total spins add up to S = 2. These
channels are discussed in depth in Appendix C and in this thesis we will consider the
bound states for all three channels.

3.3.2 Dispersion Relation

For our system the energy of the incident particles is given by the quasi-particle exci-
tation spectrum, and as we are considering the highly disordered phase (J⊥ � J‖) we
use (2.10). Therefore substituting in the CoM momentum terms we have that,

εk = ω′Q
2 +q

,

εp = ω′Q
2 −q

ωQ
2 +q

+ ωQ
2 −q

= 2J⊥ + 2J ′
[
ξQ

2 +q
+ ξQ

2 +q

]
,

= 2J⊥ + J ′
[
cos

(
Qx

2 + qx

)
+ cos

(
Qy

2 + qy

)
+ cos

(
Qx

2 − qx
)

+ cos
(
Qy

2 − qy
)]
,

= 2J⊥+ 2J ′
[
cos

(
Qx

2

)
cos (qx) + cos

(
Qy

2

)
cos (qy)

]
.

With this equation the energy spectrum is given by,[
E − ω′Q

2 +q
+ ω′Q

2 −q

]
=
{
E + 2J⊥ + 2J ′

[
cos

(
Qx

2

)
cos (qx) + cos

(
Qy

2

)
cos (qy)

]}
.

Similar to [51] we define a positive bound state energy (εB) to be the energy of the
scattered states below the minimum of the dispersion, that is,

εB = Ec
q − E > 0.

As mentioned in the previous chapter the minimum of of the dispersion relation occurs
at, (qx, qy) = (π, π) (Figure 2.4) and therefore the minimum is given by,

Ec
q = 2J⊥ − 2J ′

[
cos

(
Qx

2

)
+ cos

(
Qy

2

)]
,
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and therefore we can rewrite the above equation as,

−εB − 2J ′
[
cos

(
Qx

2

)
(1 + cos (qx)) + cos

(
Qy

2

)
(1 + cos (qy))

]
.

Therefore extracting the coupling constant leaves us with,

−J ′
{
εB
J ′

+ 2
[
cos

(
Qx

2

)
(1 + cos (qx)) + cos

(
Qy

2

)
(1 + cos (qy))

]}
(3.14)

3.4 Wavefunction of Triplon Bound State

We can define the wavefunction of the bound state of two triplons with momentum l
and k and polarisation α and β in momentum space as,

Ψ (k, l) τ †kl,αβ |0〉 =
∑
k,l
ψ (k, l) t†k,αt

†
l,β |0〉

and therefore converting it into a relative frame and using (3.10) we have,

Ψ (q,Q) τ †Q,αβ |0〉 =
∑
q>0

ψ (q,Q) t†Q
2 +q,α

t†Q
2 −q,β

|0〉 .

Where again we only consider the sum over the right half of the Brillouin zone to avoid
double counting (q > 0). Therefore we now apply the normalisation condition, however
we need to be careful about summing up all possible polarisation of the triplon states.
To see this we have to individually consider the spin channels which are covered in
appendix C. We denote the square of the normalisation coefficient for each separate
channel as P 2. Therefore the normalisation condition becomes.

|Ψ (q,Q)|2
〈
0
∣∣∣ τQ,αβτ

†
Q,αβ

∣∣∣ 0〉 = 1,

⇒ P 2 ∑
q>0
|ψ (q,Q)|2

〈
0
∣∣∣∣∣ tQ

2 +q,α
tQ

2 −q,β
t†Q

2 +q,α
t†Q

2 −q,β

∣∣∣∣∣ 0
〉

= 1,

⇒ P 2 ∑
q>0
|ψ (q,Q)|2 = 1.
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Therefore shifting the sum to the entire Brillouin zone and transforming into integral
form we have the normalisation condition,

P 2

2
∑

q
|ψ (q,Q)|2 = 1,

⇒ P 2

2

∫∫ π

−π
|ψ (q,Q)|2 1

(2π)2d
2q = 1.. (3.15)

In the context of bound states an interesting property of the wavefunction is the Root-
Mean Square (RMS) of its diameter, (D2

RMS = 〈d2〉) [51]. The RMS diameter of the
wavefunction will represent the spatial extent of the bound state on the bilayer. To
find the RMS diameter of the bound state we first consider the expectation value of
the diameter squared on the bilayer,

〈d2〉 = P 2
∫∫ ∞
−∞

ψ∗ (r) d̂2ψ (r) d2r.

Transferring this into momentum space leaves us with,

〈d2〉 = −P 2
∫∫ ∞
−∞

(
−i ∂
∂q
ψ (q)

)∗ (
i
∂

∂q
ψ (q)

)
d2q,

= P 2
∫∫ ∞
−∞

∣∣∣∣∣∂ψ (q)
∂q

∣∣∣∣∣
2

d2q.

Therefore transforming this back into our Brillouin zone we have that the RMS diam-
eter of the wavefunction, DRMS, is given by,

DRMS =
√
〈d2〉, (3.16)

Where 〈d2〉 = P 2

2
∑

q

∣∣∣∣∣∂ψ (q, )
∂q

∣∣∣∣∣
2

d2q. (3.17)

3.5 Singlet Channel Bound State, S = 0

From here on we will refer to this as the singlet bound state. Now we have the required
equations for the incident energy spectrum (3.14), Born scattering dependence (3.13)
and the bound state wavefunction (3.16) we can now consider certain cases for the
bound states. These cases depend of the spin channels Appendix C.2. First we consider



3.5. SINGLET CHANNEL BOUND STATE, S = 0 39

the singlet case, in terms of the Born amplitude, the singlet channel is given by,

M (0) (q, p) = 1
3δαβδγδMαβ,γδ (q,p)

Expanding out the Born amplitude (3.13) we see that,

M (0) (q,p) = 1
3δαβδγδJ

′′ [δαγδβδ + δαδδβγ − 2δαβδγδ] (cos (qx) cos (px) + cos (qy) cos (py))

−1
3δαβδγδJ

′′ [δαγδβδ − δαδδβγ] (sin (qx) sin (px) + sin (qy) sin (py))

+1
3δαβδγδU [δαγδβδ + δαδδβγ]

(3.18)

Therefore using the relations,

δαβδγδδαβδγδ = 9,

δαβδγδδαγδβδ = 3,

δαβδγδδαδδβγ = 3.

We see that the second term of (3.18) cancels and we are left with,

M (0) (q,p) = J ′′

3 (6− 18) (cos (qx) cos (px) + cos (qy) cos (py)) + 6U
3

= −4J ′′ (cos (qx) cos (px) + cos (qy) cos (py)) + 2U

Therefore the BSE for the singlet channel is,(
E − ω′Q

2 +q
− ω′Q

2 +q

)
ψ (q) =

∑
p
M (0) (q,p)ψ (p)

−J ′
ε

(0)
B

J ′
+ 2

[
cos

(
Qx

2

)
(1 + cos (qx)) + cos

(
Qy

2 (1 + cos (qy))
)]ψ (q) =

∑
p
{−2J ′′ [cos (qx) cos (px) + cos (qy) cos (py)] + 2U}ψ (p) . (3.19)

For the singlet case we can take advantage of the C4 point group symmetry of the
square lattice [52]. It is obvious that the under a 90◦ rotation the system is invariant.
That is the wavefunction has the property,

ψ (qx, qy) = ψ (qy, qx) . (3.20)
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Therefore in (3.19) we can reduce the RHS to,

−4J ′′
cos (qx)

∑
px

cos (px)ψ (px, py) + cos (qy)
∑
py

cos (py)ψ (px, py)
+ 2Uψ (px, py) .

Therefore applying (3.20) we can see that

∑
p

cos (px)ψ (px, py) ≡
∑

p
cos (py)ψ (py, px) .

Now by inspection, we can write,

cos (qx) cos (px) + cos (qy) cos (py)→ 2ξqξp. (3.21)

Therefore in the singlet channel the BSE equation is,

−J ′
{
εB
J ′

+ 2
[
cos

(
Qx

2

)
(1 + cos (qx)) + cos

(
Qy

2 (1 + cos (qy))
)]}

ψ (q) =∑
p
{−4J ′′ξqξp + 2U}ψ (p) . (3.22)

3.5.1 Zero Total Momentum, Q = 0

To begin the bound state calculations we consider the simplest case where the total
momentum of the triplons is zero. From (3.22) the equation for our bound state is
given by,

−J ′
[
εB
J ′

+ 4 + 4ξq

]
ψ (q) =

∑
p
{−4J ′′ξqξp + 2U}ψ (p) (3.23)

⇒ ψ (q) = 4J ′′
J ′

ξq[
εB
J ′

+ 4 + 4ξq

] ∑
p
ξpψ (p)− 2U

J ′
1[

εB
J ′

+ 4 + 4ξq

] ∑
p
ψ (p) .

and therefore by inspection our wavefunction must have the form,

ψ (q) = A
C + ξq[

εB
J ′

+ 4 + 4ξq

] . (3.24)
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Where A is some normalisation constant and C is a constant. In order to satisfy the
hard core constraint of our system (U →∞) we must enforce the condition,

∑
q
ψ (q) = 0,

⇒
∑

q

C + ξq[
εB
J ′

+ 4 + 4ξq

] = 0, (3.25)

to have a finite wavefunction. Therefore using (3.25) and substituting (3.24) back into
(3.23) we are left with the equation,

C + ξq = 4J ′′
J ′

ξq
∑

p
ξp

C + ξp[
εB
J ′

+ 4 + 4ξp

] ,

and therefore comparing coefficients we have the relation,

∑
p
ξp

C + ξp[
εB
J ′

+ 4 + 4ξp

] = J ′

4J ′′ . (3.26)

With the conditions (3.25) and (3.26) we can find the singlet bound state. First we
realise that there exists an explicit relation between the the constant C and the coupling
constants J ′ and J ′′. To see this we rewrite the conditions as,

∑
q

C + ξq

D (q, εB) = 0, (3.27)

∑
q
ξq

C + ξq

D (q, εB) = J ′

4J ′′ , (3.28)

Where D (q, εB) =
[
εB
J ′

+ 4 + 4ξq

]
, (3.29)

⇒ ξq = D (q, εB)
4 − εB

4J ′ − 1. (3.30)

Substituting (3.30) into both (3.27) and (3.28) we have that,
(
C − εB

J ′
− 1

)∑
q

1
D (q, εB) + 1

4 = 0, (3.31)

C

4 −
1
2

(
εB
J ′

+ 1
)
− εB
J ′

+ 1(C − εB
J ′

+ 1)
∑

q

1
D (q, εB) = J ′

4J ′′ . (3.32)
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Subsitituting (3.31) into (3.32) and evaluating the sum gives the relation,

C

4 −
1
4

(
εB
J ′

+ 1
)
− εB
J ′

+ 1(C − εB
J ′

+ 1)
(1

4

)
= J ′

4J ′′ ,

⇒ C = J ′

J ′′
. (3.33)

Therefore we have a simple relation between the constant and the coupling constants.

Critical Coupling

We now look for the critical coupling for the singlet bound state. The critical coupling
is the smallest required coupling for a bound state to exist. Therefore we have to find
J ′′

J ′ in the limit εB → 0+. Therefore for critical coupling (3.25) becomes,

∑
q

Ccrit + ξq

[4 + 4ξq] = 0.

This equation has a singluarity at (qx, qy) = (π, π) and therefore we must also satisfy
the condition,

Ccrit + ξq = 0 for (qx, qy) = (π, π) ,

⇒ Ccrit = 1.

and therefore from (3.33),
(
J ′′

J ′

)
crit

= 1.

Therefore in the singlet channel for J ′′

J ′ < 1 there are no bound states for Q = 0.

Strong Coupling

Now we look at the strong coupling limit for the bound state, that is for the coupling
J ′′ � J ′. In this coupling we effectively have a very deep well and therefore our bound
state is also large(εB � J ′). By inspection we see that C → 0 from (3.33) and therefore
the wavefunction of the in the strong coupling regime is,

ψ (q) = A
ξq

εB
.
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Using the normalisation condition (3.15) we then have that,

3
2A

2∑
q

ξ2
q

ε2
B

= 1,

⇒ A =
√

8
3εB.

and therefore the strong coupling wavefunction is,

ψ (q) =
√

8
3ξq. (3.34)

We can also write (3.26) as,

∑
q

ξ2
q
εB
J ′

= J ′

4J ′′ ,

⇒ εB = J ′′. (3.35)

Therefore for large coupling the binding energy is equal to J ′′.

We also have that the RMS diameter in the strong coupling regime is given by (3.16)
and therefore using (3.34) we have that,

〈d2〉 = 8
2

∫∫ π

−π
ζq

1
(2π)2d

2q,

= 1,

Where ζk = 1
2 (sin (kx) + sin (ky)) ,

⇒ RRMS = 1. (3.36)

Therefore in the strong coupling regime the RMS diameter of the wavefunction ap-
proaches the value of a lattice spacing (which we assume to be one, a = 1) as expected.

Bound State vs Coupling Constant

The equations (3.25) and (3.26) are elliptical functions and therefore cannot be solved
analytically. However they can be solved numerically using the simple method outlined
in appendix D. Using (3.33) we can reduce the problem down to one numerical equation
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we need to solve.

Sum =
∑

q

J ′

J ′′ + ξq[
εB
J ′

+ 4 + 4ξq

] = 0. (3.37)

To solve this equation for a particular coupling ratio J ′′

J ′ (and similar ones for the
remainder of the thesis) we can compute and plot the above sum for a reasonable spec-
trum of unitless energies εB

J ′ and where the plot crosses the axis is the unitless binding
energy for the particular coupling ratio which we will now refer to as the binding energy
vs coupling constant. For J ′′

J ′ = 3 and in the range εB

J ′ ∈ (0, 1) we plot (3.37) vs εB

J ′

in Figure 3.5. Therefore to produce a plot of binding energy vs the coupling constant
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Numerical Plot of Sum vs Binding Energy
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Figure 3.5: This is is numeric plot of the LHS of Sum vs εB

J ′ . There is bound state for
the root of this plot which was found to numerically be εB

J ′ ≈ 0.50600.

we just plot the numerical roots of the equation for each respective coupling constant.
The resultant plot of this for J ′′

J ′ ∈ (0, 7) and εB

J ′ ∈ (0, 2) is given in Figure 3.6. As
we can see from Figure 3.6 there exists no bound states for J ′′

J ′ < 1 as predicted. For
J ′′

J ′ → 1+ the numerical approach starts to fail which is why the plot produces a critical
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Figure 3.6: Singlet Bound State vs Coupling Constant. This is the Numeric Plot of
the roots of (3.37) for each coupling constant.
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coupling of
(
J ′′

J ′

)
≈ 1.5.

We now also find the how the RMS diameter of the wavefunction depends on the
coupling constant. Once again due to the non-analytic nature of the system we have
to approach this analytically. Considering the singlet wavefunction (3.24), the normal-
isation condition (3.15) and the RMS form we have the following relations,

〈d2〉 = 3
2A

2
∫∫ π

−π

∣∣∣∣∣∣∣∣
∂

∂q

J ′′

J ′ + ξq[
εB
J ′

+ 4 + 4ξq

]
∣∣∣∣∣∣∣∣
2

1
(2π)2d

2q

= 3 |A|2

2

∫∫ π

−π

∣∣∣∣∣∣∣∣∣
ζq[

εB
J ′

+ 4 + 4ξq

]2

(
4J
′′

J ′
− εB
J ′
− 4

)∣∣∣∣∣∣∣∣∣
2

A2 = 2
3

∫∫ π

−π

∣∣∣∣∣∣∣∣
[
εB
J ′

+ 4 + 4ξq

]
(
J ′′

J ′ + ξq
) 1

(2π)2d
2q

∣∣∣∣∣∣∣∣
2

0 =
∫∫ π

−π

J ′′

J ′ + ξq[
εB
J ′

+ 4 + 4ξq

] 1
(2π)2d

2q

Therefore we can solve these equations for each particular value of J ′′

J ′ and εB

J ′ similar
to the binding energy plot and then using these values plot 〈d2〉 against the coupling
constant. This is plotted in Figure 3.7 for the Q = 0, (1.73) and (3, 0) singlet chan-
nel. This is exactly what we expect to see, as the RMS diameter reflects the spatial
extent of the wavefunction in the strong coupling limit (tight binding) we expect a
highly localised wavefunction however in the weak coupling regime J ′′

J ′ →
(
J ′′

J ′

)
crit

+
the wavefunction is very weakly bound and therefore not localised and we have that
DRMS →∞.

3.5.2 Non-Zero Total Momentum

Now we look at the case for a non zero total momentum in the singlet channel. This
case is similar to the Q = 0 case except in the dispersion relation we have an extra
dependence on the total momentum in the x and y direction. The BSE equation for
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Figure 3.7: RMS diameter of singlet states. This plot shows how the RMS diameter
of the wavefunction for three different total momentum is dependent on the coupling
constant. This agrees with our prediction that in the strong coupling regime DRMS →
J ′′

J ′ .
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this state is given by (3.19) with the condition (3.21) which we rewrite as,

−J ′D′ (q,Q, εB)ψ (q) =
∑

p
{−4J ′′ξqξp + 2U}ψ (p)

⇒ ψ (q) = 4J ′′
J ′

ξq

D′ (q,Q, εB)
∑

p
ξpψ (p)− 2U

D′ (q,Q, εB)
∑

p
ξpψ (p)

Where D′ (q,Q, εB) = εB
J ′

+ 2
[
cos

(
Qx

2

)
(1 + cos (qx)) + cos

(
Qy

2

)
(1 + cos (qy))

]
.

Therefore we see that our wavefunction must have the form,

ψ (q) = A
C + ξq

D′ (q,Q, εB) , (3.38)

Once again we have to enforce the hardcore constraint,

∑
q
ψ (q) = 0

⇒ C + ξq

D′ (q,Q, εB) = 0 (3.39)

And similar to the Q = 0 case we find the relation,

∑
p
ξp

C + ξp

D′ (q,Q, εB) = J ′

4J ′′ .

Unlike the Q = 0 there is no trivial relation between the coupling ratio and the
constant C like (3.33). Therefore we have to numerically solve both of these equations
“simultaneously”. A plot of different total momentum is given below with the Q = 0
case for comparison. In general this was a slightly naive calculation as we did not
consider the anisotropy of the wavefunction in the Q 6= 0 case which invalidates (3.21)
for large Q but should be a valid approximation for low total momentum.

3.6 Triplet Channel Bound State, S = 1

The triplet case is the second of three possible bound states between the two triplets.
The derivation for the form of the case can be found in appendix C.2. From this we
see that for some polarisation µ, the Born Amplitude is given by,

M (1)
µ (q,p) = 1

2εµαβεµγδMαβ,γδ (q,p) .
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Figure 3.8: Plot of binding energy vs coupling constant for the singlet channel for
non zero total momentum. This plot shows how the coupling constant effects the
binding energy in the singlet channel. The Q = (3, 0) and Q = (1.73, 1.73) show that
the greater the total momentum the lower the critical coupling. However from the
plot we see that the gradient in the strong coupling regime for all the couplings are
approximately the same.
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Where there is no implied summation over µ. Therefore we find for (3.13) this triplet
channel is given by,

M (1)
µ (q,p) = 1

2εµαβεµγδJ
′′ [δαγδβδ + δαδδβγ − 2δαβδγδ] (cos (qx) cos (px) + cos (qy) cos (py))

−1
2εµαβεµγδJ

′′ [δαγδβδ − δαδδβγ] (sin (qx) sin (px) + sin (qy) sin (py))

+1
2εµαβεµγδU [δαγδβδ + δαδδβγ] .

For some polarisation µ, we have the relations,

εµαβεµγδδαβδγδ = 0,

εµαβεµγδδαγδβδ = 2,

εµαβεµγδδαδδβγ = −2.

Therefore the Born amplitude for the S = 1 channel to be,

M (1)
µ (p,q) = −2J ′′ [sin (qx) sin (px) + sin (qy) sin (py)] .

Therefore for the triplet case, the BSE is,(
E − εQ

2 +q
− εQ

2 +q

)
ψ (q) = 1

2
∑

p
M (1)

µ (q,p)ψ (p) ,

J ′
{
εB
J ′

+ 2
[
cos

(
Qx

2

)
(1 + cos (qx)) + cos

(
Qy

2

)
(1 + cos (qy))

]}
ψ (q) =∑

p
J ′′ [sin (qx) sin (px) + sin (qy) sin (py)]ψ (p) . (3.40)

Unlike the singlet channel we cannot simplify the RHS of (3.40) using the properties
of the C4 point symmetry group as the wavefunction has negative parity.
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3.6.1 Zero Total Momentum, Q = 0

Again we consider the simplest case in the triplet channel when there is no total
momentum Q = 0. The BSE is given by,

−J ′
[
εB
J ′

+ 4 + 4ξq

]
ψ (qx, qy) =

∑
p
−J ′′ [sin (qx) sin (px) + sin (qy) sin (py)]ψ (p) ,

⇒ ψ (q) = J ′′

J ′
sin (qx)[

εB
J ′

+ 4 + 4ξq

] ∑
p

sin (px)ψ (p) + J ′′

J ′
sin (qy)[

εB
J ′

+ 4 + 4ξq

] ∑
p

sin (py)ψ (p) .

(3.41)

It should be noted that there is no requirement to enforce a hardcore condition in the
triplet channel case as there is no diverging term in (3.41). This is because the wave-
function is anti-symmetric and it will be normalised such that there are no triplets on
a single lattice site.

From (3.41) we see that the wavefunction is separable into two wavefunctions,

ψx (q) = A
sin (qx)[

εB
J ′

+ 4 + 4ξq

] , (3.42)

ψy (q) = B
sin (qy)[

εB
J ′

+ 4 + 4ξq

] .

and any linear combination of them (in the Q = 0 case A = B). Therefore we can see
that the triplet case is doubly degenerate in the Q = 0 for each direction. Therefore
from this point on we will only consider the properties of the wavefunction in the x
direction ψx with the understand that it is identical in the y-direction

Therefore substituting (3.42) into (3.41) we have that,

sin (qx) = J ′′

J ′
sin (qx)

∑
p

sin2 (px)[
εB
J ′

+ 4 + 4ξp

] ,
⇒
∑

p

sin2 (px)[
εB
J ′

+ 4 + 4ξp

] = J ′

J ′′
. (3.43)
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Critical Coupling

To find the critical coupling in the triplet case we have to consider the case where the
ε→ 0. In this limit (3.43) becomes,

∑
p

sin2 (px)
4 + 4ξp

=
(
J ′

J ′′

)
crit

. (3.44)

By inspection we see that at the singularity (px, py) = (π, π) the numerator is satisfied
and therefore the equation is finite for all points as required. To find the critical
coupling

(
J ′′

J ′

)
crit

such that (3.44) is satisfied we once again have to solve it numerically.
Using the method described in appendix D to find the root we find that the critical
coupling point is, (

J ′′

J ′

)
crit

≈ 5.5

Therefore we immediately see that in the triplet channel a much higher coupling is
required to form a bound state than the singlet channel’s

(
J ′′

J ′

)
Scrit

= 1.

Strong Coupling

Similar to the singlet channel, in the strong coupling limit J ′′ � 1, where εB � 1,
(3.43) becomes in integral form,

∑
p

sin2 (px)
εB
J ′

= J ′

J ′′
,

∫ π

−π

∫ π

−π

sin2 (px)
εB
J ′

1
(2π)2d

2p = J ′

J ′′
.

Which gives the analytic solution,

εB
J ′

= 1
2
J ′′

J ′
. (3.45)

Comparing this to the singlet channel’s strong coupling limit (3.35) we see that for
strong coupling the triplet channel is again weaker than the singlet channel however
to see this strong coupling relation we have to have a very high coupling J ′′

J ′
≈ 20 and

therefore can not be seen in Figure 3.9.
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Figure 3.9: Plot of bound state energy vs coupling constant. This shows the numerical
plot of how the coupling constant affects the bound state energy in the triplet channel.
This shows that for J

′′

J ′
< 5.5 the bound state does not exist as we calculated in the

previous section.

Bound State vs Coupling Constant

Using the method outlined in appendix D and used in the singlet channel case we
numerically solve (3.43) and find the roots for corresponding values of the coupling

constant ratio. As the critical coupling point
(
J ′′

J ′

)
crit

≈ 5.5 we plot the relation for

J ′′

J ′
∈ (5, 8) in Figure 3.9.

3.6.2 Non-Zero Total Momentum

The cases where the triplon pair has a total momentum along the lattice are much
simpler to solve for the triplet channel. This is because the hard core constraint is
inherently contained in the BSE equation and therefore there for there is only one
equation to solve. To see this note that in the Q 6= 0 case the BSE equation is given
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by (3.40) and therefore can be rewritten as,

D′ (q,Q, εB)ψ (q) = J ′′

J ′
∑

p
[sin (qx) sin (px) + sin (qy) sin (py)]ψ (p) ,

⇒ ψ (q) = J ′′

J ′
sin (qx)

D′ (q,Q, εB)
∑

p
sin (px)ψ (p)

+ J ′′

J ′
sin (qy)

D′ (q,Q, εB)
∑

p
sin (py)ψ (p) ,

Where D′ (q,Q, εB) = εB
J ′

+2
[
cos

(
Qx

2

)
(1 + cos (qx)) + cos

(
Qy

2

)
(1 + cos (qy))

]
.

and therefore similar to the Q = 0 the wavefunction and necessary coupling relation
are given by,

ψx (q) = A
sin (qx)

D′ (q,Q, εB) , (3.46)

ψy (q) = B
sin (qy)

D′ (q,Q, εB) ,∑
q

sin2 (qx)
D′ (q,Q, εB) = J ′

J ′′
, (3.47)

∑
q

sin2 (qy)
D′ (q,Q, εB) = J ′

J ′′
. (3.48)

Once again in the triplet case we have two separate wavefunctions and conditions for
the x and y directions. Therefore for the remainder of this section we consider only the
x-direction with the understanding that in the y-direction there is a similar answer.
We will see however that due to anisotropy of the total momentum the degeneracy of
the system is lifted.

Now we can numerically solve the coupling relation (3.47) for a particular Q to find
both the critical coupling and the plot of binding energy vs coupling constant. Like the
singlet channel the strong coupling state is identical to the Q = 0 case (3.45). There-
fore in order to compare effectively with the singlet channel we plot the same cases as
the singlet channel for comparison Figure 3.10, however in this case to demonstrate
the anisotropy of the total momentum we need to plot (Qx, Qy) and (Qy, Qx).

Therefore we see that compared to the singlet channel the anisotropy of the total
momentum produces large a discrepancy in the binding energy. Superficially this looks
like the system breaks rotational invariance however due to the antisymmetric proper-
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Figure 3.10: Triplet Bound state for various total momenta for the x-direction (in the
y-direction the plots are identical except with the permutation (Qx, Qy)→ (Qy, Qx)).
This plot shows how the binding energy depends on the coupling constant for Q =
(0, 0), (0.5, 0.5),
(2, 0), (0, 2), (3, 0), (0, 3), (1.73, 1.73). As you can see the anisotropy of the total mo-
mentum effects the triplets states more than the singlet states in Figure 3.8.

ties of the triplet wavefunction which means that the wavefunction can be split into x
and y directions and therefore both of these bound states exists one in each direction
and therefore under a rotation of 90◦ the two states “flip” directions but not net differ-
ence and therefore the system is invariant in the triplet channel that is under rotation.
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3.7 Triplet Channel RMS Diameter

For the triplet channel we also find the RMS diameter of the wavefunction. From
Appendix C.1 we have that the normalisation of the triplet channel is P 2 = 2, and
therefore using the wavefunction (3.42) we have from (3.15) that the normalisation
constant of the wavefunction in the x-direction is given by,

A2 =
∑

q

∣∣∣∣∣∣∣
εB
J ′

+ 4 + 4ξq

sin (qx)

∣∣∣∣∣∣∣
2

and therefore from (3.16) we have we find that,

〈d2〉 = A2∑
q

∣∣∣∣∣ [cos (qx)D (q, εB) + sin (qx) cos (qx) + sin (qx) cos (qy)]
D (q, εB)2

∣∣∣∣∣
2

.

RRMS =
√
〈d2〉

Therefore from these along with the coupling condition (3.43) we find the triplet state
RMS for the Q = 0 wavefunction. Similarly with the Non-Zero case the normalisation
constant and RMS wavefunction we have the similar conditions,

A2 =
∑

q

∣∣∣∣∣D′ (q,Q, εB)
sin (qx)

∣∣∣∣∣
2

〈d2〉 = A2∑
q

∣∣∣∣∣∣∣∣∣
[
cos (qx)D′ (q,Q, εB) + 2 sin (qx)

(
cos

(
Qx

2

)
sin (qx) + cos

(
Qy

2

)
sin (qy)

)]
D′ (q,Q, εB)2

∣∣∣∣∣∣∣∣∣
2

Therefore solving this numerically we plot the RMS case in Figure 3.11 for the total
momenta Q = (1.73, 1.73), (3, 0), (0, 0) and (0, 3) to demonstrate the anisotropy of the
RMS diameter.
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Figure 3.11: Plot of three RMS diameters for the triplet channel for different total
momentum. As plotted the RMS diameter is asymptotic as it approaches the critical
coupling for the various momenta as the state is weakly bou and therefore not localised.
Also the RMS diameters approach 1 in the strong coupling regime as the bound states
become heavily localised on the bilayer and is only bounded by the lattice spacing (in
our case unity).
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3.8 Quadrupole Channel Bound State, S = 2

We now consider the last possible spin channel, the quadrupole channel. The derivation
of the quadrupole channel can be found in appendix C.3. From this we find that Born
amplitude in the quadrupole channel for a particular polarisation Sxy is given by,

M (2) = 1
2 (δxγδyδ + δxδδyγ)Mαβ,γδ (δxαδyβ + δxβδyα)

and therefore,

M (2) = 1
2 (δxαδyβ + δxβδyα) (δxγδyδ + δxδδyγ)×

J ′′ [δαγδβδ + δαδδβγ − 2δαβδγδ] (cos (qx) cos (px) + cos (qy) cos (py))

−1
2 (δxαδyβ + δxβδyα) (δxγδyδ + δxδδyγ)×

J ′′ [δαγδβδ − δαδδβγ] (sin (qx) sin (px) + sin (qy) sin (py))

+1
2 (δxαδyβ + δxβδyα) (δxγδyδ + δxδδyγ)U [δαγδβδ + δαδδβγ] .

After completing the summation we are left with the Born amplitude,

M (2) = 2J ′′ (cos (qx) cos (px) + cos (qy) cos (py)) + 2U

However, as the amplitude is positive the channel is repulsive. Therefore no bound
states can form in the quadrupole channel.
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3.9 Summary of Triplon Bound States

In this chapter we developed and implemented a process for finding the properties
of a two triplon bound state for the AFM bilayer. The bound state is an important
property especially for further study especially in the context of a triplon condensate
as we will discuss in chapter 3. Therefore it is important to find the most practical and
effective bound state. Comparing the singlet and triplet and quadrupole channels we
see there are clear distinctions in their bound states, and in the case of the quadrupole
there is no bound state and therefore we will not consider it.

Overall it is much easier to form a bound state in the singlet channel than the triplet
channel. To see this we ultimately have to compare the singlet (Figure 3.8) and triplet
(Figure 3.10) bound states for different total momenta. We see that the singlet case
consistently has a much lower critical coupling than the triplet case and therefore it is
much easy to initially form a bound state. Most importantly however is the magnitude
of the bound state for similar coupling. Considering both plots we see that in the sin-
glet channel the binding energy is much larger for the same coupling constant. In the
strong coupling regime we found from equation 3.35 and 3.45 that the singlet binding
energy is J ′′

J ′ ≈ 2 times greater than the triplet channel in the Q = 0 case. Also in the
Q = 0 case the singlet channel has a unitless binding energy of εB

J ′ ≈ 2 at a coupling
of
(
J ′′

J ′

)
crit
≈ 5 before the triplet channel has any bound state.



Chapter 4

Conclusion and Discussion

In this chapter we will present an overview of the results of the thesis and discuss future
work and possibilities.

4.1 Summary of Results

In this thesis we have considered important properties of a topical model in quan-
tum magnetism and Condensed matter physics. In chapter 2 we introduced the AFM
bilayer model which describes the formation of the quantum fluctuations at absolute
zero and from these show the presence of a QPT when using the coupling constant as
a tuning parameter and found the existence of a spin gap for triplon excitations and
more importantly the dispersion relation for triplons in the highly disordered regime
where we found the bound states.

Using the Bethe-Salpeter equation in chapter 3 and the dispersion relation of the
triplon excitations we found properties of the bound state of two triplons in the highly
disordered regime for the three different channels and how these bound states depend
on the coupling of the system. The three channels represent different spin polarisations
of the two triplons, where we found that the singlet channel (S = 0) and triplet channel
(S = 1) can both support bound states due to the attractive interaction however the
quadrapole channel (S = 2) is repulsive and no bound states exist, therefore we only
consider the triplet and singlet channels.

In the formation of bound states the most important property is the critical value
for bound states can form. In this model this is the ratio J ′′

J ′ such that εB

J ′ > 0. Com-
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paring Figure 3.8 and Figure 3.10 we found that in the singlet channel the critical
coupling consistently lower than the triplet channel.

Another important property we discovered was the robustness of the bound state in
the two channels. Once again comparing the two plots of the bound states vs coupling
constant (Figure 3.8 and Figure 3.10) we saw that for a particular coupling constant
the singlet channel bound state is consistently greater and therefore the singlet channel
has the most robust bound state.

The final property we found from the two valid channels is localisation of the bound
states in the RMS diameter in Figure 3.7 and Figure 3.11. The RMS diameter is inti-
mately related to the bound state of the system as weakly bound states (low εB) are
not localised and therefore have a large RMS whereas in the strong coupling regime the
bound state is highly localised and has a small RMS. Therefore as the singlet channel
is more robust and has a lower critical coupling than the RMS diameter will be smaller
than the triplet channel for similar momenta. This will be an important factor when
considering the interaction of two bound states (next section).

Therefore in consideration of these factors we see that the singlet channel is much more
favourable for the formation of a bound state than the other two channels. Therefore
with this basis we can now consider future directions for the applications of these bound
states.

4.2 Outlook and Future Research

This research has provided a solid foundation for further research into the behaviour of
triplons in the disordered dimer phase. The bound state of quasi-particles is a natural
first step in the direction of the formation of a macroscopic condensate of the quasi-
particles, the most salient case being that of a cooper pair formed from the bound
state of two electrons [15] and then the condensation of these Cooper pairs produces
the non dissipative superconductive state described by BCS theory [4]. In the context
of quantum magnetism, there has been topical research into the existence of conden-
sates of magnon quasi-particles [53][54] including a recent review in modern physics [55].

As we have found the bound states of triplon in the disordered phase of the AFM
bilayer the next step will be to find how these bound states interact and if there exists
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a condensate of triplons in our system. Given the nature of the disordered regime and
the vanishing viscosity of the BEC state (like in He4) we believe that if the triplons do
condense the state will behave as a spin liquid [14].

As discussed in the introduction the theoretical derivation of this spin liquid could
have a large impact on the field of condensed matter due to its connection to the
elusive HTSC state. As the bilayer layer model is an possible approximation to cer-
tain layered cuprates which exhibit HTSC [44, 37, 45, 46] the triplon bound state and
resulting condensate could have a far reaching implications.



Appendix A

Boson Commutation Relations

In this thesis we use a second quantisation bond operator approach to describe the
Hamiltonian of the AFM bilayer. A bond operator for each lattice point i describes
two electrons in the bilayer which together have spin 0 or 1 and therefore together
act as boson. Therefore the bond operators must satisfy the bosonic commutation
relations. That is for for two boson operators bk and bl the following must hold,

[
b†k, b

†
l

]
= [bk, bl] = 0[
bk, b

†
l

]
= δkl

and therefore the Bogoliubov transform must also obey the conditions,

βk = ukbk + vkb
†
−k,

β†k = ukb
†
k + vkb−k,

⇒
[
βk, β

†
k

]
=
[
ukbk + vkb

†
−k, ukb

†
k + vkb−k

]
,

= u2
k

[
bk, b

†
k

]
+ v2

k

[
b†−k, b−k

]
,

= u2
k − v2

k.
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Therefore as the Bogoliubov operators are also bosons we have that,

[
βk, β

†
k

]
= 1,

⇒ u2
k − v2

k = 1,

⇒ uk = cosh (θ) ,

vk = sinh (θ) .

In this representation θ represents a rotation through an imaginary angel in the space
of the Bogoliubov transform [15].



Appendix B

Heisenberg to Bond Operators
Calculation

In this appendix I will show how the bond operator approach perfectly maps the
Heisenberg Hamiltonian to the effective Hamiltonian for triplet excitations used in the
AFM bilayer model. The Heisenberg Hamiltonian for the unfrustrated AMF bilayer is
given by,

H = J‖
∑
〈i,j〉

(S1,i · S1,j + S2,i · S2,j) + J⊥
∑
i

S1,i · S2,i.

Therefore using the bond operators for singlets and triplets from [39],

Ŝα1 = 1
2
[
s†tα + t†αs− iεαβγt

†
βtγ
]
, (B.1)

Ŝα2 = −1
2
[
s†tα + t†αs+ iεαβγt

†
βtγ
]
, (B.2)

where α is the polarisation of the pair, we substitute these operators into the terms of
the Heisenberg and separate the order of the triplet operator.

B.1 Parallel Coupling

First we consider the intralayer coupling terms,

Hintra− = J‖
∑
〈i,j〉

(S1,i · S1,j + S2,i · S2,j) .
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Therefore substituting in (B.1), assuming that the ith lattice site has spin polarisation
α and the jth site has the polarisation β. We have that (suppressing summation over
lattice sites),

Hintra− = J‖
4
(
s†α,itα,i + t†α,isi + iεαγδt

†
γ,itδ,i

) (
s†β,jtβ,j + t†β,jsβ,j + iεβγδt

†
γ,jtδ,j

)
+

J‖
4
(
s†α,jtβ,j + t†α,isα,i − iεαγδt

†
γ,itδ,i

) (
s†β,jtβ,j + t†β,jsβ,j − iεβγδt

†
γ,jtδ,j

)
.

Therefore as we are looking for the Hamiltonian for the triplet excitation we no longer
consider the singlet operator. Expanding out the above function gives us,

Hintra− = J‖
2
(
tα,itβ,j + t†β,jtα,i + t†α,itβ,j + t†α,it

†
β,j

)
−
J‖
2 εαγδεβγδt

†
γ,itδ,it

†
γ,jtδ,j.

Therefore we can split this up into orders of triplet operators,

Hintra−,2 = J‖
2
(
tα,itβ,j + t†β,jtα,i + t†α,itβ,j + t†α,it

†
β,j

)
, (B.3)

Hintra−,3 = 0,

Hintra−,4 = −J‖2 εαγδεβγδt
†
γ,itδ,it

†
γ,jtδ,j,

= J‖
2
(
t†αit

†
β,jtβ,itα,j − t

†
αit
†
α,jtβ,itβ,j

)
.

B.2 Perpendicular Coupling

Also for the term in the Heisenberg Hamiltonian that corresponds to the inter-layer
coupling,

Hinter− = J⊥
∑
i

S1,i · S2,i.

Therefore substituting in the bond operators (B.1) the interlayer coupling term be-
comes,

Hinter− = −J⊥4
(
s†α,itα,i + t†α,isi − iεαβγt

†
β,itγ,i

) (
s†α,jtα,j + t†α,isα,i + iεαβγt

†
α,itα,i

)
,

= −J⊥4
[
tα,itα,i + tα,it

†
α,i + t†α,itα,i + t†α,it

†
α,i

]
− J⊥

4 εαβγt
†
β,itγ,iεαβγt

†
β,itγ,i.
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Splitting this up into orders of triplons,

Hinter−,2 = −J⊥4
(
tα,itα,i + t†α,itα,i + t†α,itα,i + t†α,it

†
α,i

)
, (B.4)

Hinter−,3 = 0,

Hinter−,4 = J⊥
4
(
εαβγt

†
β,itγ,iεαβγt

†
β,itγ,i

)
.

= 0

B.3 Diagonal Coupling (Frustration)

In chapter 3 we introduce a frustration term to determine the bound states. The
Heisenberg Hamiltonian for this frustration terms is given by,

HF = JF
∑
〈i,j〉

S1,i · S2,j + S2,i · S1,j.

Therefore applying the bond operators (B.1), where the adjacent sites have different
polarisations like in the parallel case, the Hamiltonian of the frustration term becomes,

HF = −JF4
(
s†α,itα,i + t†α,isi − iεαγδt

†
γ,itδ,i

) (
s†β,jtβ,j + t†β,jsβ,j + iεβγδt

†
γ,jtδ,j

)
−

JF
4
(
s†α,jtβ,j + t†α,isα,i + iεαγδt

†
γ,itδ,i

) (
s†β,jtβ,j + t†β,jsβ,j − iεβγδt

†
γ,jtδ,j

)
,

= −JF2
(
tα,itβ,j + t†β,jtα,i + t†α,itβ,j + t†α,it

†
β,j

)
− JF

2 εαγδεβγδt
†
γ,itδ,it

†
γ,jtδ,j.

Therefore separating into orders we see that,

HFrust,2 = −JF2
(
tα,itβ,j + t†β,jtα,i + t†α,itβ,j + t†α,it

†
β,j

)
, (B.5)

HFrust,3 = 0,

HFrust,4 = −JF2 εαγδεβγδt
†
γ,itδ,it

†
γ,jtδ,j,

= JF
2
(
t†αit

†
β,jtβ,itα,j − t

†
αit
†
α,jtβ,itβ,j

)
,
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B.4 Effective Hamiltonian

To get the effective Hamiltonian of the system (including frustration) we just sum up
the all three terms in (B.3), (B.4) and (B.5). Therefore we have,

H2 = J‖ − JF
2

(
tα,itβ,j + t†β,jtα,i + t†α,itβ,j + t†α,it

†
β,j

)
(B.6)

− J⊥
4
(
tα,itα,i + t†α,itα,i + t†α,itα,i + t†α,it

†
α,i

)
H3 = 0

H4 = J‖ + JF
2

(
t†αit

†
β,jtβ,itα,j − t

†
αit
†
α,jtβ,itβ,j

)



Appendix C

Spin Scattering Channels

In the scattering of particles we need to conserve the total spin of the system. This
limits the number of possible scattering processes into “spin channels”. In the bound
state of two triplons, there are 3 possible scattering channels, the singlet (S = 0)
channel which in analogous to the s-wave state, the triplet (S = 1) channel (p-wave
state) and the quadrupole (S = 2) channel (d-wave). The bound state will have
different properties (refer to chapter 3) for different channels and therefore we need
to find their influence on the Born amplitude and the wavefunction. In this appendix
we suppress momentum and only include the necessary spin notation, the momentum
dependence on the channel wavefunction is contained in ψ (q) which is dependent on
the relative momentum and total momentum of the triplon pair (3.10). In this appendix
we assume that the momentum wavefunction is normalised,

|ψ (q)|2 = 1.

In both the initial and final states of the scattering, the wavefunction is the product
of two creation operators. These creation operators are elements of the O(3) group,

t†α ∈ O(3).

Therefore for the bound state we have to consider the tensor product of the group,

ταβ = t†αt
†
β ∈ O (3)⊗O (3) .

Therefore our wavefunctions can be represented as a rank 2 tensor τα,β. This is very
similar to the standard quantum mechanical representation of angular momentum [56]
and therefore we approach it in a similar way.
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We can decompose this rank 2 tensor into 3 irreducible components. Initially τα,β

has 9 elements. We decompose it into a scalar component (Tαβ), anti-symmetric vector
component (Aαβ) and a traceless symmetric rank 2 tensor component (Sαβ).

τα,β = 1
3δαβταβ + (ταβ − τβα)

2 +
[

(ταβ + τβα)
2 − 1

3δαβταβ
]
, (C.1)

= Tαβ + Aαβ + Sαβ. (C.2)

Each of these individual components are closed under spacial rotation and it conserves
the number of elements of the original tensor.

3× 3 = 1 + 3 + 5.

C.1 Singlet Channel, S = 0

The singlet channel corresponds to the scalar component or trace of the original tensor
in (C.1)

Tαβ = 1
3δαβταβ.

Physically it represents the unpolarised spin state which is the average of all possi-
ble total polarisations. Therefore it has only 1 component. Now consider an initial
wavefunction of our system for the singlet channel,

|ψi〉 = Pψi (q)
1
3δαβt

†
αt
†
β |0〉 .

Where P is some normalisation constant for the channel. To find this normalisation
constant we need to satisfy,

〈ψi |ψi〉 = 1,

⇒ 1 = P 2

4 |ψ (q)|2 δαβδαβ
〈
0
∣∣∣ tβtαt†βt†α ∣∣∣ 0〉 ,

⇒ P =
√

3.
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Therefore the initial wavefunction is given by,

|ψi〉 = 1√
3
ψi (q) δαβt†βt†α |0〉 .

Similarly the final state is given by,

|ψf〉 = 1√
3
ψf (q′) δγδt†γt

†
δ |0〉 .

Therefore the singlet channel in the first order Born approximation of some Hamilto-
nian, H is given by,

M (0) (q, q′) = 〈ψf |Mαβ,γδ |ψi〉 ,

= 1
3δαβδγδMαβ,γδ,

and the square of the normalisation constant for this channel is P 2 = 3.

C.2 Triplet Channel, S = 1

The triplet scattering channel corresponds to a bound state with a polarised scattering
channel. It is represented by the anti-symmetric component in (C.1),

Aαβ = (ταβ − τβα)
2 .

This can be represented in terms of the totally antisymmetric tensor,

Aαβ = 1
2εµαβταβ. (C.3)

With no implied summation over µ (C.3), this corresponds to the spatial polarisation
for µ = x, y, z. Similar to the singlet channel we see that the initial wavefunction of
the triplet channel is,

|ψi〉 = P

2 ψi (q) εµαβt†αt
†
β |0〉 .
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Normalising this wavefunction gives,

P =
√

2,

⇒ |ψi〉 = 1√
2
ψi (q) εµαβt†αt

†
β |0〉 .

Therefore using similar reasoning as the singlet channel the Born amplitude of the
triplet channel with polarisation µ is given by,

M (1)
µ = 1

2εµαβεµγδMαβ,γδ.

Also we have that P 2 = 2 for the triplet channel.

C.3 Quadrapole Channel, S = 2

The final channel is the quadrupole channel. This channel is more complex than the
other two channels and it is difficult to present a general form as in the previous chan-
nels. However we can take advantage of a fundamental property of the irreducible
representation which says that all three irreducible representations are rotationally in-
varient, and therefore we can find the Born amplitude for some specific polarisation of
the triplons and it will generalise to all polarisation.

Therefore as we have that the quadrupole channel is represented by the symmetric
traceless rank 2 tensor,

Sαβ = (ταβ + τβα)
2 − 1

3δαβταβ,

= 1
2

(
ταβ + τβα −

2
3δαβταβ

)
.

Therefore we can see that choose two different polarisations will greatly simplify the
channel. In this case we will take α = x and β = y and therefore we are left with,

Sxy = 1
2
(
t†xt
†
y + t†yt

†
x

)
.

Therefore the initial normalised wavefunction for this polarisation will be,

|ψi〉 = 1√
2
ψi (q)

(
t†xt
†
y + t†yt

†
x

)
|0〉 .
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Therefore the Born amplitude for the quadrupole channel is given by,

M (2) (q,p) = 〈ψf |Mαβ,γδ |ψi〉 ,

= 1
2 (δxγδyδ + δxδδyγ)Mαβ,γδ (δxαδyβ + δxβδyα) .



Appendix D

Numerical Calculations

The numerical calculations used in this thesis are trivial however for the sake of self
containment I feel it necessary to give a brief overview of the methods used. All
numerical calculations were completed in the c programming language and due to
their simplicity require no deep understanding. In the calculation of the non analytic
integrals in chapter 3 we converted them to their summation form and then perform the
sum over 10000 evenly spaced points in a 2π×2π grid. For the root finding component
of the program we use a simple “if” function to test whether the absolute value of each
subsequent value is less than the absolute of the point before it. A sample code for
“Binding energy vs Coupling constant” for the singlet channel Q = 0 case is provided
below.

// Bryce Lackenby 28/05/2014.
// Bound State of Triplons Thesis Semester 1 2014.
// This code will print the unitless binding energy of a triplon for
// each coupling constant ratio.

#include <stdlib.h>
#include<stdio.h>
#include <math.h>

// Definition of constants in code. ITERATIONS is the number of point taken
// between -PI and PI and RESOLUTION is the resolution of the final plot
// and binding energies tested
#define ITERATIONS 100
#define BOUNDARY 6.283185307
#define RESOLUTION 0.001
#define PI 3.14159265359

// Functions
double FUNCTION(double x, double y, double a, double k);

int main(int argc, char *argv[]) {
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// Declaration of variables
double counterx;
double countery;
double interval;
double b;
double sum = 0;
double root = -20;
double rootvalue = 2;
double k;

// creates and points to a file to write data to.
FILE *fp;
fp = fopen("SingletCoupling.dat", "w");

// Loops over each value for the coupling constant.
for(k = 0.9; k <= 7 ; k = k + RESOLUTION) {

//Loops over binding energies.
for(b = 0; b <= 2; b = b + RESOLUTION) {

//Following two loops finding the value of the sum of the
//function in the 2PI*2PI grid.
for(counterx = -PI + 0.0001; counterx < PI ;

counterx = counterx + interval){
for(countery = -PI + 0.0001; countery < PI;

countery = countery + interval){
sum = sum + FUNCTION(counterx, countery, b, k);

}
}

// Root finding equation.
if(fabs(sum) < fabs(root)){

root = sum;
rootvalue = b;

}
else{}

// Reinitialises sum.
sum = 0;

}

// Prints the value of the coupling constant and corresponding
// root to the file.
if(rootvalue != 2){

fprintf(fp, "%lf, %lf \n", k, rootvalue);
}

else{}

root = -20;
}

fclose(fp);
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return EXIT_SUCCESS;
}

//Function that needs to be summed in the region. In this case it is the
//singlet condition
double FUNCTION(double x, double y, double a, double k) {

double ANSWER;

ANSWER = (1/k + 0.5*(cos(x) + cos(y)))/((a + 4 + 2*cos(x) + 2*cos(y)));

return ANSWER;

}

All numerical calculations use this method when finding the summation in the Brillouin
zone.
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